Low-level expression of let-7a in gastric cancer and its involvement in tumorigenesis by targeting RAB40C

Qiaoyuan Yang1,2,*, Zhigang Jie3,*, Hong Caoy, Anne R.Greenlee5, Chengfeng Yang6, Fei Zou1 and Yiguo Jiang1,2,*

1School of Public Health and Tropical Medicine, Southern Medical University, 18318 North Guangzhou Avenue, Guangzhou 510515, People’s Republic of China, 2Institute of Chemical Carcinogenesis, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 510182, People’s Republic of China, 3Department of General Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, People’s Republic of China, 4Department of General Surgery, People’s Hospital of Jiangxi Province, Nanchang 330006, People’s Republic of China, 5The Jackson Laboratory, Bar Harbor, ME 04609, USA and 6Department of Physiology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA

*Correspondence should be addressed. Tel: +86 80 81340186; Fax: +86 80 81340724; Email: yiguo69@yahoo.com
Correspondence may also be addressed to Fei Zou. Tel: +86 80 61648301; Fax: +86 80 61648324; Email: zoufei26@163.com

Gastric cancer is the fourth most common cancer and the second leading cause of cancer mortality worldwide but the underlying molecular mechanism is not entirely clear. The objective of this study was to explore the role of let-7a microRNA (miRNA) in gastric tumorigenesis and the possible correlation between RAB40C and let-7a miRNA in gastric cancer. We found that expression of let-7a is reduced in human gastric cancer tissues and cell lines and there was a significant correlation between the level of let-7a expression and the stage of differentiation. Overexpression of let-7a resulted in a decrease in cell proliferation and G1 arrest, significantly suppressed anchorage-dependent growth in vitro and the tumorigenicity of gastric cancer cells in a nude mouse xenograft model. Furthermore, we demonstrated that RAB40C is regulated directly by let-7a and plays an essential role as a mediator of the biological effects of let-7a in gastric tumorigenesis. This study revealed that let-7a is significant in suppressing gastric cancer growth in vivo and in vitro and provided the first evidence that RAB40C is negatively regulated by let-7a at the posttranscriptional level via binding to the 3’-untranslated region of RAB40C messenger RNA in gastric cancer. The results of this study suggest that let-7a and RAB40C are potentially useful targets for gastric cancer diagnosis and therapy.

Introduction

Gastric cancer is the fourth most common cancer and the second leading cause of cancer mortality worldwide despite a decreasing incidence in recent decades (1). It remains an important public health burden worldwide, especially in developing countries. In China, gastric cancer has the highest mortality among all cancers and the overall mortality rate has increased steadily in the past 20 years (2). However, the molecular mechanisms involved in gastric cancer are diverse, complex and not fully understood.

New opportunities in the study of cancer molecular mechanisms have been provided by the discovery of microRNAs (miRNAs), a class of short non-coding endogenous RNAs that function as negative regulators of gene expression (3). As the major endogenous triggers for posttranscriptional silencing, miRNAs can negatively regulate the expression of a protein-coding gene by binding with the 3’-untranslated regions (3’-UTRs) of their messenger RNA (mRNA) targets and then repressing expression of the target gene through mRNA degradation or translational inhibition (4,5). miRNAs are predicted to target more than one-third of human genes and each miRNA can control hundreds of target genes (6). Moreover, miRNAs have been demonstrated to be evolutionarily conserved and to perform regulatory functions in numerous biological processes, including developmental timing, cell proliferation, apoptosis, metabolism, cell differentiation and morphogenesis (7–9).

Recently acquired evidence demonstrates that miRNAs can be regulators in carcinogenesis. Calin et al. (10) showed that >50% of the known mature human miRNA genes are located in cancer-associated genomic regions or in fragile sites, suggesting that miRNAs might have an important role in the pathogenesis of human cancers. Moreover, different cancer types have distinct miRNA expression profiles, and an increasing number of miRNAs have been suggested to have important roles in tumor progression or in tumor suppression (11–13). Increased expressions of some miRNAs, such as miR-21 and miR-27a, have been found to play crucial roles in gastric tumors (14,15). In addition, the miR-106b-25 cluster, which is upregulated in human gastric tumors, is involved in the posttranscriptional regulation of transcription factor E2F1 (16) and miR-15b and miR-16 modulate multi-drug resistance by targeting B-cell lymphoma/leukemia-2 (BCL2) in human gastric cancer cells (17). In contrast, miR-9, miR-141, miR-143, miR-145, miR-342 and miR-451 are downregulated in gastric cancer and these miRNAs act as anti-oncogenic miRNAs with a significant growth inhibitory effect on gastric cancer (18–21).

Among all human cancer-related miRNAs, the let-7 family has attracted the most interest because its family members have been noted to express aberrantly in human cancers (22,23). The family was discovered initially in Caenorhabditis elegans and is currently one of the most important members of the miRNA family. The let-7 family consists of 11 very closely related genes and many human let-7 genes map to regions that are altered or deleted in human tumors, indicating that these genes might function as tumor suppressors (22). Moreover, when overexpressed in colon cancer cells, let-7 miRNA leads to growth proliferation associated with a reduced level of RAS protein (24), let-7a is downregulated in Burkitt’s lymphoma and it has been shown to be an anticancer miRNA that represses C-MYC expression at the translational level (25). Recently, the implication of let-7 in carcinogenesis has been extended to the repression of high-mobility group A2, thus preventing oncogenic transformation in many tumors (26,27). These findings suggest that let-7 miRNAs participate actively in tumorigenic processes and the targets involved in the regulation of let-7 miRNAs have been associated with various tumorigenic processes in addition to the miRNAs themselves. However, the data for the relationship between gastric carcinogenesis and the expression of let-7a miRNA are very limited. Evidence collected to date shows let-7a was linked to the modulation of different target genes, the most well-known being the RAS family. The RAS proteins function as the critical molecular switch for various signaling pathways controlling the diverse biological processes. RAB40C is a member of the RAS family, which plays important roles in tumorigenesis. With the help of a bioinformatic analysis, we found RAB40C contained the let-7a binding site and was evolutionarily conserved across 10 species. To our knowledge, there is no report of work investigating the role of let-7a or a possible correlation between RAB40C and let-7a miRNA in gastric cancers.
In this study, we used the quantitative real-time polymerase chain reaction (PCR) to examine the expression of let-7a mature miRNA in 27 matched pairs of normal and gastric cancer tissues from patients. In comparison with normal tissues, we found that the expression of let-7a was significantly lower in gastric tumor specimens. Importantly, increased expression of let-7a suppressed cell growth in vitro and tumor growth in vivo and was associated with decreased rates of cell proliferation and the cell cycle. This is the first report that let-7a is involved in tumorigenesis of gastric cancer both in vitro and in vivo. Furthermore, it is confirmed for the first time that let-7a targets RAB40C directly. By targeting RAB40C, let-7a suppresses proliferation and anchorage-independent growth of human gastric cancer cells. Our findings suggest that let-7a and RAB40C might be valuable tools for developing interventions aimed at treating and diagnosing gastric cancer.

Materials and methods

Patients and tissue samples

In 2008–09, 27 pairs of gastric cancer tissues and matched normal gastric tissues were obtained with informed consent from patients in the First Affiliated Hospital of Nanchang University (Nanchang, China). All tissue samples were confirmed anaplastic and snap-frozen in liquid nitrogen. The non-cancerous gastric tissues were taken 3 cm away from the tumor. Clinicopathologic information was available for all samples and the study was approved by the Medical Ethics Committee of Nanchang University and the Medical Ethics Committee of Guangzhou Medical University.

Cell lines and reagents

The human gastric epithelial cell lineGES-1 and human gastric cancer cell lines SGC-7901, BGC-823 and HGC-27 were purchased from the Cell Resource Center of Xiangya Central Laboratory (Changsha, China). Human gastric cancer cell line MKN-28 was provided by the Laboratory Animal Center of the Fourth Military Medical University (Xian, China). Human gastric cancer cell line AGS was donated by the Sun Yat-Sen University Cancer Center (Guangzhou, China). All cells, except AGS cells, were grown in Dulbecco’s modified Eagle’s medium (DMEM) (Gibco, Carlsbad, CA) supplemented with 10% (vol/vol) fetal bovine serum, 50 U/ml penicillin and 50 μg/ml streptomycin. The AGS cells were grown in F12k medium (Sigma, Louis, MO) supplemented with 10% fetal bovine serum, with 50 U/ml penicillin and 50 μg/ml streptomycin. All cell lines were incubated at 37°C in a humidified 5% (vol/vol) CO2 atmosphere.

RNA extraction and quantitative real-time–PCR-based detection of let-7a and RAB40C miRNA

Total RNA from tissue samples and cell lines was obtained with the TRIzol® isolation reagent (Invitrogen, Carlsbad, CA) following the manufacturer’s instructions. About 100 mg of tissue was homogenized in 1 ml of TRIzol reagent and then entered into the same step of the analysis as cell samples. The concentration, purity and amount of total RNA were determined by ultraviolet spectrophotometry (ND-1000 spectrophotometer, NanoDrop Technologies, Wilmington, DE). The reverse transcription (RT)–PCR was used to detect the expression of let-7a and the RAB40C gene at the transcript level as described (26). Briefly, this method uses two-step RT–PCR. In the RT step, complementary DNA was reverse transcribed from total RNA samples using the ReverTra Ace qPCR RT kit (TOYOBO, Tokyo, Japan). The quantitative real-time–PCR for detecting the expression of let-7a using the TaqMan MicroRNA assay (Applied Biosystems, Foster City, CA) together with the TaqMan Universal PCR Master Mix (Applied Biosystems) were done with an Applied Biosystems 7500 real-time PCR system (Applied Biosystems). The relative quantification of let-7a was calculated using the 2^-ΔΔCt method normalized with respect to RN18S as the internal control and relative to a calibrator sample as the external control. The SYBR Premix Ex Tag™ Kit (TaKaRa, Dalian, China) was used for detecting the expression of RAB40C miRNA following the manufacturer’s instructions. The data were also calculated using the 2^-ΔΔCt method normalized to the individual β-actin level. All primers were synthesized by TaKaRa. The primers were β-actin forward: CCAAGATCATGGTGAACGCT and reverse: GAGTCCATCACGATGC-CAGT and RAB40C forward: TCTAGGAAAGGTCCTCACGTC and reverse: TTGGACCTCTTTGGAGCTT.

miRNA and small interfering RNA transfections

The let-7a mimic was an RNA duplex with the sequence: 5'-UGAGGUAGUAGGUUGUUAGU-3' and 5'-CUACAAACUAACUACACAU-3'.

The mimic non-specific control miRNAs duplex (named mimic NC) with a sequence of: 5'-UUUCUGGAGCAGGUGUCACUTT-3' and 5'-AGGUGA-CACGGUGGCCAACTT-3' was not homologous to any human genome sequence. For the in vivo tumorigenicity assay, all pyrimidine nucleotides in the let-7a mimic or mimic NC were substituted by their 2'-O-methyl analogs to improve RNA stability. The anti-let-7a: 5'-AAGUAACACUUCAUCUCACUCUCU-3' was a 2'-O-methyl-modified oligoribonucleotide designed as let-7a inhibitor. The inhibitor non-specific control miRNAs (named inhibitor NC), with the sequence: 5'-CAGUACUUUUUGUAGUAACAA-3' was used as a negative control for anti-let-7a in the antagonism experiment. All the RNA oligoribonucleotides were purchased from GenePharma (Shanghai, China). A blank control treated with only the transfection reagent was used in every transfection experiment. Small interfering RNAs (siRNAs) for human RAB40C sequence sense: 5'-GGGGCAUUGACACUCAACTT-3' and antisense: 5'-UUGGAGUGAACACUCCCTT-3' and scrambled siRNA were designed and synthesized by GenePharma.

Cells were seeded onto six-well plates (3 x 10⁵ cells per well) the day before transfections were performed. Cells (~60% confluent) were transfected with let-7a mimic (50 nmol/L), mimic NC (50 nmol/L), inhibitor (100 nmol/L) or inhibitor NC (100 nmol/L) using Lipofectamine™ 2000 (Invitrogen) and transfection efficiency (>90%) was confirmed with the use of the Silencer 5-carboxyfluorescein-labeled Negative Control (GenePharma). For the miRNA and siRNA combination experiments, cells were transfected with let-7a mimic (50 nmol/L) for 24 h. These cells were then cotreated with RAB40C siRNA (100 nmol/L) or siRNA NC (100 nmol/L) for another 24 h. Total RNA and protein were prepared 1 or 2 days after transfection and were used for RT–PCR or western blot analysis to validate the knockdown efficiency.

Cell proliferation assay

The cell proliferation assay was done with a cell counting kit-8 (CCK-8; Dojindo, Tokyo, Japan) at 24 h after transfection. Briefly, 5000 transfected GES-1, AGS or BGC-823 cells were plated per well in 96-well plates at 24 h after transfection and cultured in 100 μl of cell culture medium per well for 24 h in normal conditions. After incubation for 24 h, 20 μl of CCK-8 reagent was added to each well and incubated at 37°C for 1 h. The absorbance at 450 nm (A450) and at 650 nm (A650) were measured with a Synergy 2 microplate reader (BioTek, Winooski, VT). The final absorbance was calculated as A450 - A650, and cell viability was normalized as:

(Final absorbance treated/final absorbance control) × 100%.

 Colony formation assay

Transfected GES-1, AGS and BGC-823 cells were trypsinized, counted and seeded at a density of 1000 cells per 60 mm culture dish in normal culture medium for colony formation assay and incubated for 10 days at 37°C in a humidified 5% CO2 atmosphere. During colony growth, the culture medium was replaced every 3 days and a colony was counted only if it contained >50 cells. Colony formation and growth were visualized by staining with crystal violet and the colony formation rate was calculated as:

(Number of colonies/number of seeded cells) × 100%.

Cell cycle analysis

Cells were harvested at 24 h after transfection and fixed in 70% ice-cold ethanol, treated with RNase A, stained with 50 mg/ml propidium iodide and 0.1 mg/ml RNase A for DNA content analysis by flow cytometry with a FACS Calibur system (Becton Dickinson, Franklin, NJ). The percentage of cell population in each phase was calculated with FlowJo FACS analysis software (Tree Star, Ashland, OR).

Soft agar assay

Soft agar plates were prepared in triplicate in 60 mm dishes with a bottom layer of 0.6% (w/vol) Noble agar (Sigma) in serum-free DMEM. Thereafter, transfected cells were trypsinized and 1000 cells per dish were seeded onto the bottom agar layer after mixing with 0.3% Noble agar in DMEM supplemented with 10% fetal bovine serum and allowed to harden. To assess cell viability before plating in soft agar, the number of cells was determined by staining with trypan blue. The dishes were incubated for 3 weeks at 37°C in a humidified 5% CO2 atmosphere and scored for clones. The result is expressed as the number of colonies at least 50 cells per well.

Tumorigenicity assays in nude mice

Five-week-old Balb/c nude mice were provided by Guangzhou University of Traditional Chinese Medicine (Guangzhou, China). All experimental procedures involving animals were in accordance with the Guide for the Care and Use of Laboratory Animals and were in accord with the institutional ethical guidelines for experiments with animals. Transfected and control BGC-823 cells were trypsinized, collected by centrifugation and suspended in DMEM.
A 0.2 ml sample of culture medium containing 5 x 10^6 cells was injected subcutaneously into the right-hand side of the posterior flank of each mouse. The mice were housed in a pathogen-free environment and monitored every 5 days for tumor growth. The mice were killed after 40 days and the weight and volume of each tumor were determined. The tumor xenografts were excised and weighed, then used for the extraction of total RNA and immunohistochemical assays. The tumor latency time was determined as the time to appearance of palpable tumor and the volume (V) was calculated as described (29).

Immunohistochemistry

Ki-67 protein expression in the cancer tissues of nude mice was detected using the streptavidin–peroxidase complex method with a Histostain–plus kit (Zhongshan Golden-Bridge Biotechnology, Beijing, China). Rabbit anti-human Ki-67 antibodies (Boster, Wuhan, China) were used at a dilution of 1:400 as primary antibodies. Color development was achieved with 3,3'-diaminobenzidine, which stained positive cells brown. Normal rabbit serum and secondary antibody alone were used as negative controls.

Western blotting

Total proteins were prepared by standard procedures and quantified by the BCA method (Jiancheng, Nanjing, China). A 20 µg sample of protein was mixed with 5x sodium dodecyl sulfate/polyacrylamide gel electrophoresis sample buffer (Weijia, Guangzhou, China) and boiled for 5 min before sodium dodecyl sulfate–polyacrylamide gel electrophoresis (15% polyacrylamide gel) and transfer to a polyvinylidene difluoride membrane (Millipore Corp., Bedford, MA). The membrane was blocked with 5% non-fat dry milk in phosphate-buffered saline for 45 min at 37°C with agitation. RAB40C protein and glyceraldehyde-3-phosphate dehydrogenase on the same membrane were quantified by dividing the membrane into two pieces according to the molecular mass of prestained protein standards (Weijia). The piece of the membrane with the greater molecular mass proteins was incubated with a primary antibody for rat anti-human RAB40C (Epitomics, Burlingame, CA) at a concentration of 1:1000 at 37°C for 1 h. The other piece of the membrane was incubated with a primary antibody for mouse anti-human glyceraldehyde-3-phosphate dehydrogenase (Epitomics) at a concentration of 1:1500. Signals were detected by secondary antibodies labeled with IRDye 800 (Rockland Immunochemicals, Gilbertsville, PA) and signal intensity was determined with an Odyssey Infrared Imaging System (Li-Cor Biosciences, Lincoln, NE).

Luciferase reporter assay

The full-length 3'-UTR of RAB40C gene (GenBank accession number NM_021168; length 1650 bp) were cotransfected with 0.5 g of psiCHECK-2 vector constructs with let-7a mimic or inhibitor were functional. The transfected cell lines, which demonstrated that the transfected let-7a mimic significantly increased the levels of cells of all the cell lines used in this study. The T/N ratios in patients with poor differentiation were significantly lower than those with moderate or good differentiation (Table I; Figure 1C). However, there was no significant difference between the groups divided by any other clinicopathologic feature, including gender, tumor size, histologic cell type, lymph node metastasis or venous invasion. To confirm the association between the expression of let-7a and gastric cancer, five cell lines derived from gastric cancers with various degrees of differentiation were selected to detect let-7a expression: MKN-28 (well differentiated), AGS (well differentiated), SGC-7901 (moderately differentiated), BGC-823 (poorly differentiated or undifferentiated) and HGC-27 (undifferentiated). The data showed that the expression of let-7a was significantly downregulated in MKN-28 (0.63-fold), AGS (0.33-fold), SGC-7901 (0.28-fold), BGC-823 (0.23-fold) and HGC-27 (0.13-fold) cells compared with normal human gastric epithelial cell line GES-1 (Figure 1D).

let-7a regulates cell proliferation and the cell cycle

We evaluated the transfection efficiency by determining the percentage of cells containing the 5-carboxyfluorescein-labeled non-specific miRNA control and the results indicated successful transfection of 5-carboxyfluorescein-labeled non-specific miRNA control into >90% of cells of all the cell lines used in this study. TaqMan real-time PCR revealed the transfected let-7a mimic significantly increased the levels of let-7a (Figure 2A), whereas the transfected let-7a inhibitor effectively inhibited the expression of let-7a (Figure 2B) compared with mimic NC or inhibitor NC cells or with untransfected cells in all six cell lines, which demonstrated that the transfected let-7a mimic and inhibitor were functional.

<table>
<thead>
<tr>
<th>Clinicopathologic factor</th>
<th>No. of patients</th>
<th>Relative let-7a expression</th>
<th>Min–max (median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>60</td>
<td>19</td>
<td>0.04–8.97 (0.47)</td>
<td>0.313</td>
</tr>
<tr>
<td>≤60</td>
<td>8</td>
<td>0.08–2.00 (0.25)</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>17</td>
<td>0.04–8.97 (0.47)</td>
<td>0.335</td>
</tr>
<tr>
<td>Female</td>
<td>10</td>
<td>0.04–2.63 (0.25)</td>
<td></td>
</tr>
<tr>
<td>Tumor size (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>3</td>
<td>7</td>
<td>0.10–2.72 (0.82)</td>
<td>0.580</td>
</tr>
<tr>
<td>≤3</td>
<td>20</td>
<td>0.04–8.97 (0.31)</td>
<td></td>
</tr>
<tr>
<td>Histologic cell type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well differentiated</td>
<td>6</td>
<td>0.10–8.97 (2.06)</td>
<td>0.018</td>
</tr>
<tr>
<td>Moderately differentiated</td>
<td>8</td>
<td>0.16–2.63 (0.45)</td>
<td></td>
</tr>
<tr>
<td>Poorly differentiated</td>
<td>13</td>
<td>0.04–2.00 (0.19)</td>
<td></td>
</tr>
<tr>
<td>Lymph node metastasis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>12</td>
<td>0.04–2.72 (0.51)</td>
<td>0.727</td>
</tr>
<tr>
<td>Present</td>
<td>15</td>
<td>0.04–8.97 (0.35)</td>
<td></td>
</tr>
<tr>
<td>Venous invasion</td>
<td></td>
<td></td>
<td>0.862</td>
</tr>
</tbody>
</table>

Results

Expression of let-7a is reduced in human gastric cancer tissues and cell lines

The clinicopathologic data for 27 patients are given in Table I. Based on the results of TaqMan real-time PCR, we found the expression of let-7a in 21 cancer tissues was lower than that in the matched normal tissues (Figure 1A). The expression of let-7a was significantly lower in gastric cancer tissues than that in normal tissues, with a median change of 0.38-fold (Figure 1B). Next, we examined the correlation of the tumor tissue (T)/normal tissue (N) ratios for let-7a expression with the clinicopathologic factors given in Table 1. The T/N ratios in patients with poor differentiation were significantly lower than those with moderate or good differentiation (Table I; Figure 1C). However, there was no significant difference between the groups divided by any other clinicopathologic feature, including gender, tumor size, histologic cell type, lymph node metastasis or venous invasion. To confirm the association between the expression of let-7a and gastric cancer, five cell lines derived from gastric cancers with various degrees of differentiation were selected to detect let-7a expression: MKN-28 (well differentiated), AGS (well differentiated), SGC-7901 (moderately differentiated), BGC-823 (poorly differentiated or undifferentiated) and HGC-27 (undifferentiated). The data showed that the expression of let-7a was significantly downregulated in MKN-28 (0.63-fold), AGS (0.33-fold), SGC-7901 (0.28-fold), BGC-823 (0.23-fold) and HGC-27 (0.13-fold) cells compared with normal human gastric epithelial cell line GES-1 (Figure 1D).

let-7a in gastric cancer

Table I. The Clinicopathologic factors of 27 gastric cancer patients and comparison of let-7a expression in different groups

<table>
<thead>
<tr>
<th>Clinicopathologic factor</th>
<th>No. of patients</th>
<th>Relative let-7a expression</th>
<th>Min–max (median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>60</td>
<td>19</td>
<td>0.04–8.97 (0.47)</td>
<td>0.313</td>
</tr>
<tr>
<td>≤60</td>
<td>8</td>
<td>0.08–2.00 (0.25)</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>17</td>
<td>0.04–8.97 (0.47)</td>
<td>0.335</td>
</tr>
<tr>
<td>Female</td>
<td>10</td>
<td>0.04–2.63 (0.25)</td>
<td></td>
</tr>
<tr>
<td>Tumor size (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>3</td>
<td>7</td>
<td>0.10–2.72 (0.82)</td>
<td>0.580</td>
</tr>
<tr>
<td>≤3</td>
<td>20</td>
<td>0.04–8.97 (0.31)</td>
<td></td>
</tr>
<tr>
<td>Histologic cell type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well differentiated</td>
<td>6</td>
<td>0.10–8.97 (2.06)</td>
<td>0.018</td>
</tr>
<tr>
<td>Moderately differentiated</td>
<td>8</td>
<td>0.16–2.63 (0.45)</td>
<td></td>
</tr>
<tr>
<td>Poorly differentiated</td>
<td>13</td>
<td>0.04–2.00 (0.19)</td>
<td></td>
</tr>
<tr>
<td>Lymph node metastasis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>12</td>
<td>0.04–2.72 (0.51)</td>
<td>0.727</td>
</tr>
<tr>
<td>Present</td>
<td>15</td>
<td>0.04–8.97 (0.35)</td>
<td></td>
</tr>
<tr>
<td>Venous invasion</td>
<td></td>
<td></td>
<td>0.862</td>
</tr>
</tbody>
</table>
let-7a suppresses anchorage-dependent growth in vitro and tumor growth in vivo

The significant reduction of let-7a on cell growth in vitro prompted us to explore the possible biological significance of let-7a in tumorigenesis. AGS and BGC-823 cells were used in these assays. To test how long the promotion of let-7a by the let-7a mimic can be sustained, we measured the let-7a levels after 1, 2, 3, 4, 7, 10, 14 and 21 days from transfection by TaqMan real-time PCR. We found that the promotion effect lasted up to at least 10 days in let-7a mimic-transfected AGS cells (Figure 3A) and 14 days in let-7a mimic-transfected BGC-823 cells (Figure 3B) compared with mimic NC-transfected cells. The colony numbers of AGS and BGC-823 cells that formed in soft agar medium were decreased at 3 weeks after transfection with the let-7a mimic (Figure 3C and D). Furthermore, AGS and BGC-823 cells transfected with the let-7a mimic displayed fewer and smaller colonies compared with the mimic NC-transfected and untransfected cells (Figure 3E). Taken together, these results suggest that the initial promotion of let-7a might be sufficient to inhibit tumor growth and prompted us to investigate the role of let-7a on tumor growth in vivo.

Poorly differentiated BGC-823 cells were included in this step to further confirm the promotion effect on tumor growth in vivo induced by transfection of the let-7a mimic. The emerging rate of tumors derived from cells transfected with the let-7a mimic was only 63.2% of that derived from the cells transfected with the mimic NC (Figure 4B). The average weight of tumors derived from cells transfected with the let-7a mimic was significantly lower than that of those derived from the cells transfected with the mimic NC (Figure 4C and D). There was no significant difference of tumor volume, tumor average weight or other indices between the mimic NC-transfected cell group and the untransfected cell group. Additionally, the expression of the proliferation marker Ki-67 was significantly lower in tumor xenografts of the let-7a mimic group compared with the mimic NC and untransfected groups (Figure 4E). These results indicate that the reduced tumor growth is probably due to decreased proliferation induced by let-7a.

RAB40C is a direct target of let-7a

A bioinformatic analysis identified RAB40C as a hypothetical target gene of let-7a, as identified by TargetScan algorithim (http://www.targetscan.org/). The let-7a targeting sites in RAB40C 3'-UTR are conserved among mammals and the corresponding sequences of RAB40C mutated 3'-UTRs are shown in supplementary Figure S1, available at Carcinogenesis Online. The putative secondary RNA hybrid (http://bibiserv.techfak.uni-bielefeld.de/rahhybrid/) for human let-7a and RAB40C or N-Ras mRNA with minimal free energy is shown in supplementary Figures S2 and S3, available at Carcinogenesis Online. Our analysis indicates that let-7a has a more stable secondary structure with lower free energy with RAB40C compared with the validated target N-Ras.

Next, we found overexpression of let-7a in AGS and BGC-823 cells effectively decreased the level of the RAB40C protein. A blocking strategy was further adapted by introducing the let-7a inhibitor into AGS-1 cells, which increased the level of the RAB40C protein (Figure 5A). In both cases, neither the let-7a mimic nor the inhibitor affected the mRNA of RAB40C (supplementary Figure S4 is available at Carcinogenesis Online), suggesting posttranscriptional regulation of RAB40C by let-7a in gastric cancer cell lines. A further hint about the potential role of let-7a in the regulation of RAB40C expression came from the analysis of 5 different gastric cancer cell lines (MKN-28, AGS, SGC-7901, BGC-823 and HGC-27) that showed 75.01 to 60.35%, whereas the percentage of cells in the S phase was increased from 20.61 to 35.76% compared with the inhibitor NC group (Figure 2F). These findings, together with the cell proliferation results (Figure 1C), illustrated that let-7a could be a tumor suppressor gene in gastric cancer.
a significant reversed nonlinear correlation between let-7a levels and the RAB40C protein (Figures 5B and C). To assess the clinical relevance of these findings, we examined the correlation between the level of the RAB40C protein with let-7a expression in the 27 matched normal and cancer tissues (Figure 5D). There was a reversed nonlinear correlation between the level of the RAB40C protein and let-7a expression (Figure 5E). These results support the premise that down-regulation of let-7a increases the level of RAB40C gene in gastric cancer.

To confirm the direct interaction between let-7a and its binding site within RAB40C mRNA, a human RAB40C 3'-UTR fragment containing a wild type or mutant let-7a-binding sequence was cloned downstream of the luciferase reporter gene. The psiCHECK-2 vector was cotransfected in GES-1 cells in association with let-7a mimic or inhibitor. GES-1 cells transfected with psiCHECK-2 vector showed 50% decrease or 30% increase of the relative luciferase activity when cotransfected with let-7a mimic or inhibitor (Figure 5F and G). The let-7a seed sequence was mutagenized in the cloned RAB40C 3'-UTR region to generate the psiCHECK-2-let-7a mt vector. No significant change of the relative luciferase activity was observed following the cotransfection of this mutated vector with let-7a mimic or inhibitor (Figure 5F and G). These findings showed a direct interaction between let-7a and RAB40C mRNA and indicated that let-7a might suppress gene expression through the let-7a binding sequence at the 3'-UTR of RAB40C.

RAB40C mediates the let-7a effect on cell proliferation and anchorage-independent growth

To confirm that the let-7a effect on cell proliferation and anchorage-independent growth is associated with its modulation of RAB40C, GES-1 cells were transfected with siRNA targeting RAB40C or control siRNA. Transfection of AGS cells with siRNA for RAB40C effectively suppressed RAB40C mRNA expression (Figure 6A) and RAB40C protein (Figure 6B). A similar effect was observed in BGC-823 cells (Figure 6A and B). RAB40C depletion significantly alleviated the anti-proliferative effect of let-7a upregulation in AGS cells and BGC-823 cells as determined by the CCK-8 assay (Figure 6C). Furthermore, RAB40C siRNA attenuated the plating efficiency of cells in soft agar, which was decreased upon the transfection of let-7a mimic in AGS and BGC-823 cells as determined by the CCK-8 assay (Figure 6D). These data provided further evidence that RAB40C was targeted by let-7a and therefore suggested that RAB40C mediates the let-7a effect on cell proliferation and anchorage-independent growth in gastric cancer cells.

Discussion

miRNAs are becoming increasingly recognized as regulatory molecules in human cancers, which have been demonstrated to function as oncogenes or tumor suppressors. let-7a has been suggested to function as a tumor suppressor and have a strong correlation with...
Clinicopathologic factors or prognosis in cancer patients (22,23,30). In the present study, the 75% let-7a expression of gastric carcinoma samples was significantly lower than that of matched normal tissues, suggesting that reduced let-7a expression is a frequent event in gastric cancer. Furthermore, we found that the expression level of let-7a was associated with the differentiation stage in patients and the same results were observed in the cells. Our analytical results showed that tumor tissue of patients and cell lines with lower levels of let-7a tended to have poor differentiation. This observation was consistent with an earlier report that identified the loss of let-7 expression as a marker for less differentiated cancer (31). These results indicated that let-7a expression might be an important indicator for gastric cancer diagnosis and clinical stage.

miRNAs have been shown to be important in the development and maintenance of normal cellular function, and alteration in expression of miRNAs can result in human cancer initiation and tumor progression. Some studies have reported that let-7 miRNA was a master regulator of cell proliferation and cell cycle pathways in lung, colorectal and hepatic cells (22,23,32). However, no information is available on the impact of altered let-7a expression on gastric cancer cell proliferation pathways. Here, we show that overexpression of let-7a resulted in 40–50% decrease in cell proliferation rate and the effect

Fig. 3. The change of let-7a expression and inhibition of anchorage-dependent growth by overexpression of let-7a. (A and B) The change of let-7a expression after 1, 2, 3, 4, 7, 10, 14 and 21 days from let-7a mimic and let-7a mimic NC transfected or untransfected AGS (A) or BGC-823 (B) cells. (C and D) Inhibition of anchorage-dependent growth by the let-7a mimic in AGS (C) and BGC-823 (D) cells. (E) Representative results of colony formation of untransfected, NC-transfected and mimic-transfected AGS and BGC-823 cells. The data in (A–D) are shown as mean ± SD from three independent experiments. *P < 0.05; **P < 0.01, compared with the let-7a mimic NC-transfected group. P values were obtained by one-way analysis of variance or the non-parametric Kruskal–Wallis H test for multiple comparisons.
let-7a was attenuated by the inhibition of let-7a. More importantly, decreased levels of protein Ki-67, which has been used as a marker for cell proliferation (33), were detected in the xenografts of the let-7a mimic-transfected cells. It further confirmed that cell proliferation was affected by let-7a miRNA in gastric cancer. Flow cytometry-based cell cycle analysis revealed a trend toward an accumulation of cells in G1 phase in let-7a mimic-transfected gastric cancer cells. Conversely, let-7a inhibitor caused a significant increase in the fraction of cells in S phase. However, in the present study, we did not observe any apparent increase of the sub-G1 population or any apoptosis-related morphological changes, such as nuclear blebbing or condensation, under the phase contrast microscope (data not shown). This suggests that growth suppression induced by let-7a transfection was caused by induction of G1 arrest rather than apoptosis. This study confirmed the results of that earlier work and extended our knowledge of the inhibitory effect of let-7a on cell proliferation and cell cycle control in gastric cancer cells. All the results demonstrated that the consistently reduced let-7a expression in gastric cancer should be a factor contributing to the development of the tumor rather than being affected as a consequence of the disease.

Gastric tumor xenograft models were established to investigate the antitumor effect of let-7a in vivo relevant to our findings in vitro. Mice injected with BGC-823 cells transfected with the let-7a mimic showed a significant inhibition of tumor xenografts, implying that overexpression of let-7a suppressed tumor growth of gastric cancer significantly in nude mice. Therefore, therapeutic strategies to introduce let-7a into cancer cells might be useful for retarding the process of tumorigenesis. Experiments with the xenograft carcinoma model indicated that one transient transfection with let-7a mimic is sufficient to cause substantial inhibition of tumor growth, which raises the possibility that let-7a mimic might have potential therapeutic value, consistent with the earlier studies (34).

It is generally accepted that miRNAs exert their function through regulating the expression of their downstream target genes (35). Thus, putative let-7a targets were predicted using TargetScan programs. Computational predictions suggest that let-7a can target 819

Fig. 4. Suppression of tumor growth by overexpression of let-7a. (A) The tumor latency was the number of days to the onset of palpable tumor and the values are given as mean ± SD (n = 4 per group). *P < 0.05, compared with let-7a mimic NC-transfected or untransfected cells-injected group. (B) Tumor growth curves were measured after injection of untransfected BGC-823 cells, let-7a mimic NC and let-7a mimic-transfected BGC-823 cells. The tumor volume V (in cubic centimeter) was calculated using the formula volume V = 0.5 L W², where L is the length of the tumor (in centimeter), W is the width of the tumor (in centimeter) and V is the mean tumor volume (n = 4 per group). (C) Tumor weight; the values are given as mean ± SD (n = 4 per group). *P < 0.05, compared with let-7a mimic NC-transfected cells-injected group. (D) Effect of let-7a on tumorigenesis in vivo. The photograph shows representative features of tumor xenografts 40 days after inoculation. (E) Representative immunohistochemical assay of Ki-67 in tumor xenografts of mice injected with untransfected cells, mimic NC-transfected cells or let-7a mimic-transfected cells. P values were obtained by one-way analysis of variance for multiple comparisons.
transcripts, with a total of 905 conserved binding sites and 125 poorly conserved binding sites. **RAB40C** is a member of the **RAS** family, which plays important roles in the regulation of immune responses, embryo and cell lineage development, cell cycle progression, inflammation and oncogenesis and is involved in the execution of important steps in tumorigenesis (36,37). Moreover, the dysregulation of **RAS** family members is frequently observed in human cancers (38–40). In this study, **RAB40C** was significantly overexpressed in gastric tumor samples compared with the matched normal tissue. Based on the bioinformatic analysis, **let-7a** binds to the 3'-UTR of **RAB40C** mRNA with lower free energy than **N-Ras** mRNA. It might stabilize a favorable conformation that facilitates the binding between **let-7a** and 3'-UTRs of **RAB40C** (41,42), which prompted us to explore whether **RAB40C** is a functional target of **let-7a**.

Here, we demonstrate that **RAB40C** is regulated directly by **let-7a**. This is evident at the level of the **RAB40C** protein is dysregulated by the change of **let-7a** expression without any change in the amount of **RAB40C** mRNA. In addition, there was a significant inverse correlation of **let-7a** expression with the level of **RAB40C** protein in gastric cancer cell lines and gastric tumor tissues. To the best of our knowledge, this is the first report showing a correlation between **RAB40C** mRNA and **let-7a** miRNA in clinical samples of human cancer. Moreover, mutation of the **let-7a**-binding site abolished the effect of **let-7a** on the regulation of **RAB40C** fluorescence intensity. Importantly, depletion of **RAB40C** by siRNA transfection partly rescues the reduced cellular proliferation and the plating efficiency of cells in soft agar observed upon **let-7a** up-regulation, further demonstrating that **RAB40C** is a target of **let-7a** and suggesting an essential role for **RAB40C** as a mediator of the biological effects of **let-7a** in gastric tumorigenesis. This is the first study to show that **RAB40C** is negatively regulated by **let-7a** at the posttranscriptional level via binding to the 3'-UTR of **RAB40C** mRNA in gastric cancer cells.

In summary, we report that **let-7a** expression was decreased in human gastric cancer tissues and cell lines. Our study extended the...
Fig. 6. The effect of RAB40C siRNA and let-7a mimic on cell proliferation and anchorage-independent growth. (A) Suppression of RAB40C mRNA expression levels by RAB40C siRNA transfection. (B) Suppression of RAB40C protein expression levels by RAB40C siRNA transfection. (C) The effect of RAB40C siRNA and let-7a mimic on cell proliferation. Relative cell growth is compared with the untransfected group. Relative cell growth is compared with the untransfected group. Data are given as mean ± SD from three independent experiments. *P < 0.05; **P < 0.01, compared with the siRNA NC group. P values were obtained by one-way analysis of variance or the non-parametric Kruskal–Wallis H test for multiple comparisons.

Supplementary material
Supplementary Figures S1–S4 can be found at http://carcin.oxfordjournals.org/

Funding
National Natural Science Foundation of China (30771780, 30972443 to J.Y.); Natural Science Foundation of Guangdong Province (07117550, 9251018201000004 to J.Y.); Science and Technology Pillar Program of Jiangxi Province (09DS16000 to C.H.).

Acknowledgements
We thank Xia Zhou and Wei Li (Department of General Surgery, First Affiliated Hospital of Nanchang University) for collecting the clinicopathologic information for the patients. We thank Rong Liu (Institute of Respiratory Diseases, First Affiliated Hospital of Guangzhou Medical University) for assistance with the nude mice assays.

Conflict of Interest Statement: None declared.

References

Received September 29, 2010; revised January 21, 2011; accepted February 12, 2011